
Dynamic Binary Firmware
Analysis With Avatar²

THCon 2023
Paul OLIVIER

2023-04-20

>

Paul OLIVIER

● Recent Ph.D. graduate (EURECOM)

● Just joined as postdoc @ LAAS-CNRS

● Dynamic analysis for embedded system security

● Part of the maintainer team of avatar²

whoami

>

● Motivation

● Rehosting Firmware

● Avatar²: A Multi-Target Orchestration Platform

● Framework Overview

● Conclusion

Content

> Introduction

4

Prevalence of bugs in the Wild

>

Prevalence of bugs in the Wild

Introduction

5

>

Prevalence of bugs in the Wild

Introduction

6

> Introduction

7

● Severity and impact of software bugs
○ Vulnerabilities: unauthorized access, information leak, denial of service, ransomware
○ Cost: finding & fixing, system downtime
○ Human life: car driving assistance, Boeing 737 MAX, radiology, etc.

● Thorough testing of firmware is crucial to guarantee its safety and security

● Static and dynamic analysis are two main approaches.

> Introduction

8

● Severity and impact of software bugs
○ Vulnerabilities: unauthorized access, information leak, denial of service, ransomware
○ Cost: finding & fixing, system downtime
○ Human life: car driving assistance, Boeing 737 MAX, radiology

● Thorough testing of firmware is crucial to guarantee its safety and security

● Static and dynamic analysis are two main approaches.

> Introduction

9

● Severity and impact of software bugs
○ Vulnerabilities: unauthorized access, information leak, denial of service, ransomware
○ Cost: finding & fixing, system downtime
○ Human life: car driving assistance, Boeing 737 MAX, radiology

● Thorough testing of firmware is crucial to guarantee its safety and security

● Static and dynamic analysis are two main approaches.

>

Static analysis

● Examine without executing code

● Limitations

○ Larger coverage… but less precise (no execution context)

○ No need to run code… but does not require external systems

Motivation: Firmware Analysis

10

>

Static analysis

● Examine without executing code

● Limitations

○ Achieve larger coverage… but less precise (no execution context)

○ No need to run code… but does not require external systems

Motivation: Firmware Analysis

11

> Motivation: Firmware Analysis

● Dynamic analysis techniques are plenty & powerful

○ more precise… but smaller coverage

○ tracing, profiling, fuzzing, concolic execution, sanitizers, data taint tracking, record-replay,
interactive debugging, etc.

12

LTTng

Manticore

PANDA

strace

angr AFL++

> Motivation: Firmware Analysis

● … but require to setup the environment

● Not always feasible to run them on the physical device:

○ Constrained environment (computing power, memory size, network bandwidth)

○ Insufficient ability to control & observe code execution

13

> Motivation: Firmware Analysis

● … but require to setup the environment

● Not always feasible to run them on the physical device:

○ Constrained environment (computing power, memory size, network bandwidth)

○ Insufficient ability to control & observe code execution

14

> Motivation: Firmware Analysis

● … but require to setup the environment

● Not always feasible to run them on the physical device:

○ Constrained environment (computing power, memory size, network bandwidth)

○ Insufficient ability to control & observe code execution

15

> Motivation: Emulation & Rehosting

● Alternative: emulation

● Rehosting:

16

> Motivation: Emulation & Rehosting

● Alternative: emulation

● Rehosting:

Fasano, Andrew, et al. SoK: Enabling security analyses of embedded systems via rehosting, Asia CCS 2021
17

The process of moving the firmware from its
original “host” into a virtualized environment that

reproduce the original well enough for its
execution and analysis

> Motivation: Rehosting Challenges

● Challenges to run a firmware in an emulator

1. Acquisition:
○ Protected memory, disable debug interface, anti-tampering sensors
○ Encryption, obfuscation, proprietary format

2. Execution:
○ Understand the Instruction Set Architecture (ARM, MIPS, m68k, Blackfin,

Xtensa, etc.)
○ Design to run on a specific hardware (peripherals)

Fasano, Andrew, et al. SoK: Enabling security analyses of embedded systems via rehosting, Asia CCS 2021
18

> Motivation: Rehosting Challenges

● Challenges to run a firmware in an emulator

1. Acquisition:
○ Protected memory, disable debug interface, anti-tampering sensors
○ Encryption, obfuscation, proprietary format

2. Execution:
○ Understand the Instruction Set Architecture (ARM, MIPS, m68k, Blackfin,

Xtensa, etc.)
○ Design to run on a specific hardware (peripherals)

Fasano, Andrew, et al. SoK: Enabling security analyses of embedded systems via rehosting, Asia CCS 2021
19

>

● Various techniques
○ emulation,
○ record-replay,
○ symbolic execution,
○ hardware-in-the-loop,
○ hybrid

● How to combine tools to leverage their strengths and tackle complex
problems?

Problem Statement

>

● Various techniques
○ emulation,
○ record-replay,
○ symbolic execution,
○ hardware-in-the-loop,
○ hybrid

● How to combine tools to leverage their strengths and tackle complex
problems?

Problem Statement

>

● Facilitate interoperability between Dynamic Binary Analysis techniques and

tools

● Provide abstractions of debuggers, emulators and other frameworks

● Open source https://github.com/avatartwo/avatar2

avatar²

https://github.com/avatartwo/avatar2

>

● Scriptable (Python based)

● Multiple architecture (ARM, MIPS, x86)

● Target orchestration

○ State transfer & Synchronization

○ Forward memory & I/O accesses

○ Model peripheral

avatar² Features

>

● Orchestration

avatar² Overview

>

● Physical device

avatar² Overview

>

● Emulator

avatar² Overview

> Initialization

Init

avatar = Avatar(arch=ARM_CORTEX_M3)

device = avatar.add_target(OpenOCDTarget)

emulator = avatar.add_target(QemuTarget)

rom = avatar.add_memory_range(0x08000000,

0x1000000, file=firmware)

ram = avatar.add_memory_range(0x20000000,

0x14000)

avatar.init_targets()

> Initialization

Init

avatar = Avatar(arch=ARM_CORTEX_M3)

device = avatar.add_target(OpenOCDTarget)

emulator = avatar.add_target(QemuTarget)

rom = avatar.add_memory_range(0x08000000,

0x1000000, file=firmware)

ram = avatar.add_memory_range(0x20000000,

0x14000)

avatar.init_targets()

> Initialization

Init

avatar = Avatar(arch=ARM_CORTEX_M3)

device = avatar.add_target(OpenOCDTarget)

emulator = avatar.add_target(QemuTarget)

rom = avatar.add_memory_range(0x08000000,

0x1000000, file=firmware)

ram = avatar.add_memory_range(0x20000000,

0x14000)

avatar.init_targets()

> Initialization

Init

avatar = Avatar(arch=ARM_CORTEX_M3)

device = avatar.add_target(OpenOCDTarget)

emulator = avatar.add_target(QemuTarget)

rom = avatar.add_memory_range(0x08000000,

0x1000000, file=firmware)

ram = avatar.add_memory_range(0x20000000,

0x14000)

avatar.init_targets()

> State Transfer

● Synchronize CPU registers and
memory content

● Focus the analysis
(device & firmware initialization)

> State Transfer

1) Set the breakpoint on the physical

device

device.set_breakpoint(0x8005104)

device.cont()

device.wait()

2) Transfer the state

avatar.transfer_state(device, emulator,

 synced_ranges=[ram])

emulator.cont()

> State Transfer

1) Set the breakpoint on the physical

device

device.set_breakpoint(0x8005104)

device.cont()

device.wait()

2) Transfer the state

avatar.transfer_state(device, emulator,

 synced_ranges=[ram])

emulator.cont()

> State Transfer

1) Set the breakpoint on the physical

device

device.set_breakpoint(0x8005104)

device.cont()

device.wait()

2) Transfer the state

avatar.transfer_state(device, emulator,

 synced_ranges=[ram])

emulator.cont()

> Peripheral Forwarding

● Forward I/O memory

>

Define the various memory ranges

rom = avatar.add_memory_range(0x08000000,

0x1000000, file=firmware)

ram = avatar.add_memory_range(0x20000000,

0x14000)

mmio = avatar.add_memory_range(0x40000000,

0x1000000, forwarded=True,

forwarded_to=device)

Peripheral Forwarding

> Peripheral Modeling

● Emulate peripheral in python

>

class UART(AvatarPeripheral):

 # ...

 def dispatch_read(self, offset, size):

 if offset == 0x11c:

 return self.txdone

 return 0x00

 def dispatch_write (self, offset, size, value):

 if offset == 0x11c:

 self.txdone = value

 elif offset == 0x51c:

 print(f">>>> {chr(value)} <<<<")

 self.txdone = 1

 return True

Peripheral Modeling

>

class UART(AvatarPeripheral):

 # ...

Define the various memory ranges

...

uart = avatar.add_memory_range(0x40002000,

0x1000, emulate=UART)

Peripheral Modeling

>

● Handbook

○ https://github.com/avatartwo/avatar2/tree/main/handbook

● Examples

○ https://github.com/avatartwo/avatar2-examples
○ U-Boot - Example without hardware
○ NUCLEO L152RE - Transfer state
○ NRF51 BLE - WiSec'21 tutorial on avatar2
○ Rehosting the Raspberry Pi Pico blink example

Going Further

https://github.com/avatartwo/avatar2/tree/main/handbook
https://github.com/avatartwo/avatar2-examples

>

● Handbook

○ https://github.com/avatartwo/avatar2/tree/main/handbook

● Examples

○ https://github.com/avatartwo/avatar2-examples
○ U-Boot - Example without hardware
○ NUCLEO L152RE - Transfer state
○ NRF51 BLE - WiSec'21 tutorial on avatar2
○ Rehosting the Raspberry Pi Pico blink example

Going Further

https://github.com/avatartwo/avatar2/tree/main/handbook
https://github.com/avatartwo/avatar2-examples

>

● Rehosting
○ https://github.com/halucinator/halucinator
○ Records peripheral accesses to model them: https://github.com/ucsb-seclab/pretender

● Fuzzing
○ https://github.com/FirmWire/FirmWire
○ https://github.com/fgsect/unicorefuzz

● Symbolic execution
○ https://angr.io/blog/angr_symbion/
○ https://github.com/csvl/SEMA-ToolChain

Going Further

https://github.com/halucinator/halucinator
https://github.com/ucsb-seclab/pretender
https://github.com/FirmWire/FirmWire
https://github.com/fgsect/unicorefuzz
https://angr.io/blog/angr_symbion/
https://github.com/csvl/SEMA-ToolChain

>

● Dynamic firmware binary analysis is still a challenging topic

● Various possible approaches

● Avatar² focuses on interoperability of tools

Conclusion

>

● Framework
https://github.com/avatartwo/avatar2

● Examples
https://github.com/avatartwo/avatar2-examples

● Slack
https://avatartwo.slack.com/

● Team

○ Paul OLIVIER (paul.olivier@laas.fr)
○ Marius MUENCH
○ Florian ALBRECHT
○ Aurélien FRANCILLON

Links

https://github.com/avatartwo/avatar2
https://github.com/avatartwo/avatar2-examples
https://avatartwo.slack.com/
mailto:paul.olivier@laas.fr

Backup slides

45

> A wide variety of systems for firmware

46

busybox

uClibc-ng

> Firmware classification

Type I

● General purpose
OS-based devices

● minimalist
● lightweight user mode

applications

Muench, Marius, et al. What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded Devices, NDSS 2018

Type III

● Devices without an
OS-Abstraction

● monolithic firmware

Type II

● Embedded OS-based
devices

● small footprint
● high performance
● real-time scheduling

47

busybox

> Firmware classification

Type I

● General purpose
OS-based devices

● minimalist
● lightweight user mode

applications

Muench, Marius, et al. What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded Devices, NDSS 2018

Type III

● Devices without an
OS-Abstraction

● monolithic firmware

Type II

● Embedded OS-based
devices

● small footprint
● high performance
● real-time scheduling

48

busybox

> Firmware classification

Type I

● General purpose
OS-based devices

● minimalist
● lightweight user mode

applications

Muench, Marius, et al. What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded Devices, NDSS 2018

Type III

● Devices without an
OS-Abstraction

● monolithic firmware

Type II

● Embedded OS-based
devices

● small footprint
● high performance
● real-time scheduling

49

busybox

> Firmware classification

Type I

● General purpose
OS-based devices

● minimalist
● lightweight user mode

applications

Muench, Marius, et al. What You Corrupt Is Not What You Crash: Challenges in Fuzzing Embedded Devices, NDSS 2018

Type III

● Devices without an
OS-Abstraction

● monolithic firmware

Type II

● Embedded OS-based
devices

● small footprint
● high performance
● real-time scheduling

50

busybox

